Getting Started with R and RStudio

Jessica Minnier, PhD & Meike Niederhausen, PhD OCTRI Biostatistics, Epidemiology, Research & Design (BERD) Workshop

2019/09/24 & 2020/02/19

slides: bit.ly/berd_intro_r
 pdf: bit.ly/berd_intro_r_pdf

1. Open slides: bit.ly/berd_intro_r

2. Install R

- Windows:
 - Download from https://cran.rstudio.com/bin/windows/base/
- Mac OS X:
 - Download the latest .pkg file (currently R-3.6.2.pkg) from https://cran.rstudio.com/bin/macosx/

3. Install RStudio Desktop Open Source License

• Select download file corresponding to your operating system from https://www.rstudio.com/products/rstudio/download/#download

4. Download folder of data (unzip completely)

- Go to bit.ly/intro_rproj and **unzip** folder
- Open (double click on) **berd_intro_project.Rproj** file.

Questions

- Who has used R?
- What other statistical software have you used?
- Has anyone used other programming languages (C, java, python, etc)?
- Why do you want to learn R?

Learning Objectives

- Basic operations in R/RStudio
- Understand data structures
- Be able to load in data
- Basic operations on data
- Be able to make a plot
- Know how to get help

Introduction

Rrrrr?

What is R?

- A programming language
- Focus on statistical modeling and data analysis
 - import data, manipulate data, run statistics, make plots
- Useful for "Data Science"
- Great visualizations
- Also useful for most anything else you'd want to tell a computer to do
- Interfaces with other languages i.e. python,
 - C++, bash

For the history and details: Wikipedia

- an interpreted language (run it through a command line)
- procedural programming with functions
- Why "R"?? Scheme (?) inspired S (invented at Bell Labs in 1976) which inspired R (free and open source! in 1992)

What is RStudio?

R is a programming language

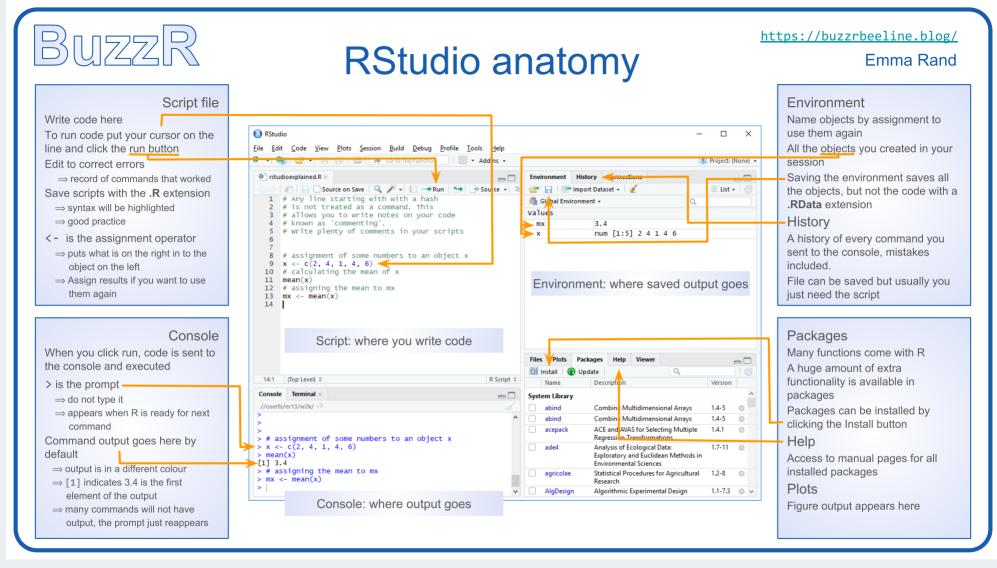
RStudio is an integrated development environment (IDE) = an interface to use R (with perks!)

- R is like a car's engine
- · RStudio is like a car's dashboard

R: Engine

RStudio: Dashboard

Modern Dive


Start RStudio

Double click on the berd_intro_project.Rproj file.

1.1.2 Using R via RStudio

Recall our car analogy from earlier. Much as we don't drive a car by interacting directly with the engine but rather by interacting with elements on the car's dashboard, we won't be using R directly but rather we will use RStudio's interface. After you install R and RStudio on your computer, you'll have two new *programs* (also called *applications*) you can open. We'll always work in RStudio and not in the R application. Figure 1.2 shows what icon you should be clicking on your computer.

Emma Rand

Rstudio demo

R Projects (why .Rproj file?) & Good Practices

Use projects to keep everything together (read this)

- Create an RStudio project for each data analysis project, for each homework assignment, etc.
- A project is associated with a directory folder
 - Keep data files there
 - Keep scripts there; edit them, run them in bits or as a whole
 - Save your outputs (plots and cleaned data) there
- Only use relative paths, never absolute paths
 - o relative (good): read.csv("data/mydata.csv")
 - absolute (bad):

read.csv("/home/yourname/Documents/stuff/mydata.csv")

Advantages of using projects

- standardizes file paths
- keep everything together
- a whole folder can be easily shared and run on another computer
- when you open the project everything is as you left it

Let's code!

Coding in the console

Typing and execting code in the console

- Type code in the console
- Press **return** to execute the code
- Output shown below

Coding in the console is not advisable for most situations!

- We only recommend this for short pieces of code that you don't need to save
- We will be using scripts (. R files) to run and save code (in a few slides)

> 7			
[1]	7		

> 3	+ 5
[1]	8
> "	nello"
[1]	"hello"
	this is a comment, nothing happens 5 - 8
> #	separate multiple commands with ; + 5; 4 + 8
[1]	8
[1]	
L-J	13 /

We can do math

> 10^2
[1] 100
> 3 ^ 7
[1] 2187
> 6/9
[1] 0.6666667
> 9-43
[1] -34

R follows the rules for order of operations and ignores spaces between numbers (or objects)

> 4^3-2* 7+9 /2

[1] 54.5

The equation above is computed as

$$4^3 - (2 \cdot 7) + rac{9}{2}$$

Logarithms and exponentials

Logarithms: log() is base <i>e</i>	Exponentials
> log(10)	> exp(1)
[1] 2.302585	[1] 2.718282
> log10(10)	> exp(0)
[1] 1	[1] 1

Check that log() is base e

> log(exp(1))

[1] 1

Using functions

- log() is an example of a function
- functions have "arguments"
- **?log** in console will show help for **log()**

Arguments read in order:	Arguments read by name:
> mean(1:4)	> mean(x = 1:4)
[1] 2.5	[1] 2.5
> seq(1,12,3)	> seq(from = 1, to = 12, by = 3)
[1] 1 4 7 10	[1] 1 4 7 10

Variables

Data, information, everything is stored as a variable

- Can assign a variable using either = or <-
 - Using <- is preferable
 - type name of variable to print

Assigning just one value:

> x = 5 > x		
[1] 5		
> x <- 5 > x		
[1] 5		

Assigning a **vector** of values

• Consecutive integers

> a < > a	<- 3	:10						
[1]	3	45	6	78	9	10		
• Co	onca	aten	ate a	a stri	ng	ofnu	ımb	ers
• Co > b < > b					0		ımb	ers

We can do math with variables

Math using variables with just one value

> x <- 5 > x
[1] 5
> x + 3
[1] 8
> y <- x [^] 2
> y
[1] 25

Math on vectors of values: **elementwise** computation

> a <- 3:6 > a	
[1] 3 4 5 6	
> a+2; a*3	
[1] 5 6 7 8	
[1] 9 12 15 18	
> a*a	
[1] 9 16 25 36	18/66

Variable can include text (characters)

```
> hi <- "hello"
```

> hi

[1] "hello"

```
> greetings <- c("Guten Tag", "Hola", hi)
> greetings
```

[1] "Guten Tag" "Hola" "hello"

Missing values

Missing values are denoted as NA and are handled differently depending on the operation. There are special functions for NA (i.e. is.na(), na.omit()).

> x <- c(1, 2, NA, 5) > is.na(x)	> x <- c("a", "a", NA, "b") > table(x)
[1] FALSE FALSE TRUE FALSE	x a b 2 1
> mean(x)	
[1] NA	<pre>> table(x, useNA = "always")</pre>
> mean(x, na.rm=TRUE)	x a b <na> 2 1 1</na>
[1] 2.666667	

Viewing list of defined variables

- ls() is the R command to see what objects have been defined.
- This list includes all defined objects (including dataframes, functions, etc.)

> ls()				
[1] "a"	"b"	"greetings" "hi"	"x"	"y"

• You can also look at the list in the Environment window:

Environment	History	Connections	
💣 🔒 🖙	Import Dat	aset 🗸 🚽 🎻	
🛑 Global Envi	ronment 👻		
Values			
a			int [1:4] 3 4 5 6
b			num [1:5] 5 12 2 100 8
greetings			chr [1:3] "Guten Tag" "Hola" "hello"
hi			"hello"
x			5
У			25

Removing defined variables

• The R command to delete an object is **rm()**.

> ls()							
[<mark>1</mark>] "a"	"b"	"greetings" "hi"	"x"	"y"			
<pre>> rm("greeting > ls()</pre>	<mark>s",</mark> hi) #	Can run with or witho	ut quotes				
[1] "a" "b" "x" "y"							
Remove EVERYTHING - Be careful!!							
<pre>> rm(list=ls() > ls()</pre>)						
character(0)							

Common console errors (1/2)

Incomplete commands

- When the console is waiting for a new command, the prompt line begins with >
 - If the console prompt is +, then a previous command is incomplete
 - You can finish typing the command in the console window

Example:

> 3 + (2*6 +)	
[1] 15	

Common console errors (2/2)

Object is not found

• This happens when text is entered for a non-existent variable (object)

Example:

> hello

Error in eval(expr, envir, enclos): object 'hello' not found

• Can be due to missing quotes

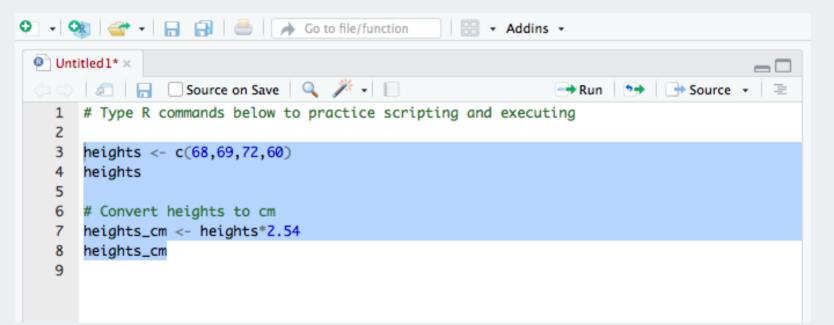
> install.packages(dplyr) # need install.packages("dplyr")

Error in install.packages(dplyr): object 'dplyr' not found

R scripts (save your work!)

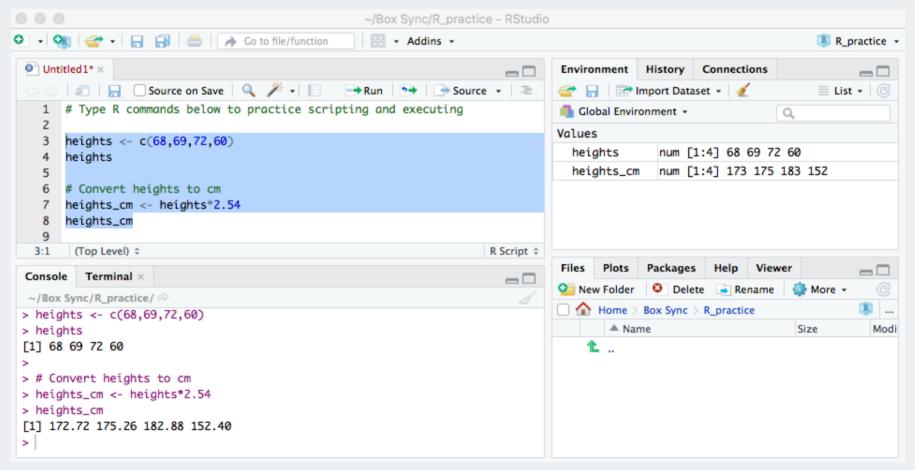
Coding in a script (1/3)

• Create a new script by


- selecting File -> New File -> R Script,
- or clicking on
 (the left most button at the top of the scripting window), and then selecting the first option R Script

• Type code in the script

- Type each R command on its own line
- Use # to convert text to comments so that text doesn't accidentally get executed as an R command


Coding in a script (2/3)

- Select code you want to execute, by
 - placing the cursor in the line of code you want to execute,
 - or highlighting the code you want to execute
- Execute code in the script, by
 - clicking on the even button in the top right corner of the scripting window,
 - or typing one of the following key combinations to execute the code
 - Windows: ctrl + return
 - Mac: command + return

Coding in a script (3/3)

- The screenshot below shows code in the scripting window (top left window)
- The executed highlighted code and its output appear in the console window (bottom left window)

Useful keyboard shortcuts

action	mac	windows/linux	
run code in script	cmd + ctrl + enter enter		
<-	option + -	alt + -	

Try typing (with shortcut) in a script and running

y <- 5	
У	

Now, in the *console*, press the up arrow.

Others: (see full list)

action	mac	windows/linux
interrupt currently executing command	esc	esc
in console, go to previously run code	up/down	up/down
keyboard shortcut help	option + shift + k	alt + shift + k

Saving a script

• Save a script by

- selecting File -> Save,
- or clicking on ☐ (towards the left above the scripting window)
- You will need to specify
 - a **filename** to save the script as
 - ALWAYS use .R as the filename extension for R scripts
 - $\circ~$ the ${\it folder}$ to save the script in

Practice time!

Practice 1

- 1. Open a new R script and type code/answers for next tasks in it. Save as **Practice1.R**
- 2. Create a vector of all integers from 4 to 10, and save it as **a1**.
- 3. Create a vector of even integers from 4 to 10, and save it as a2.
- 4. What is the sum of **a1** and **a2**?
- 5. What does the command sum(a1) do?
- 6. What does the command length(a1) do?
- 7. Use the sum and length commands to calculate the average of the values in a1.
- 8. Compute the sum of all integers from 1 to 100. Then compare your answer to the one you get using the formula for sum of the first n integers: n(n+1)/2.
- 9. Compute the sum of the squares of all integers from 1 to 100.

10. Take a break!

Object types

Data frames

Vectors vs. **data frames**: a data frame is a collection (or array or table) of vectors

```
df <- data.frame(
    IDs=1:3,
    gender=c("male", "female", "Male"),
    age=c(28, 35.5, 31),
    trt = c("control", "1", "1"),
    Veteran = c(FALSE, TRUE, TRUE)
    )
df</pre>
```

##		IDs	gender	age	trt	Veteran
##	1	1	male	28.0	control	FALSE
##	2	2	female	35.5	1	TRUE
##	3	3	Male	31.0	1	TRUE

- Allows different columns to be of different data types (i.e. numeric vs. text)
- Both numeric and text can be stored within a column (stored together as *text*).
- Vectors and data frames are examples of *objects* in R.
 - There are other types of R objects to store data, such as matrices, lists, and tibbles.
 - These will be discussed in future R workshops.

Variable (column) types

type	description
integer	integer-valued numbers
numeric	numbers that are decimals
factor	categorical variables stored with levels (groups)
character	text, "strings"
logical	boolean (TRUE, FALSE)

• View the **structure** of our data frame to see what the variable types are:

str(df)

```
## 'data.frame': 3 obs. of 5 variables:
## $ IDs : int 1 2 3
## $ gender : Factor w/ 3 levels "female","male",..: 2 1 3
## $ age : num 28 35.5 31
## $ trt : Factor w/ 2 levels "1","control": 2 1 1
## $ Veteran: logi FALSE TRUE TRUE
```

Data frame cells, rows, or columns

SIIC		VVII			ПС	
df						
##		IDs	gender	age	trt	Veteran
##	1	1	male	28.0	control	FALSE
##	2	2	female	35.5	1	TRUE
##	3	3	Male	31.0	1	TRUE

Specific cell value:

Showwhole data frame

```
DatSetName[row#, column#]
```

```
# Second row, Third column
df[2, 3]
```

[1] 35.5

Entire column:

DatSetName[, column#]

```
# Third column
df[, 3]
```

[1] 28.0 35.5 31.0

Entire row: DatSetName[row#,]

```
# Second row
df[2,]
```

IDs gender age trt Veteran
2 2 female 35.5 1 TRUE

Getting the data into Rstudio

Load a data set

• Read in csv file from file path with code (filepath relative to Rproj directory)

mydata <- read.csv("data/yrbss_demo.csv")</pre>

- Or, open saved file using Import Dataset button in Environment window:
 Environment History Connections
 - 😅 🔒 📑 Import Dataset 👻 🔏
 - If you use this option, then copy and paste the importing code to your script so that you have a record of from where and how you loaded the data set.

View(mydata)

Can also view the data by clicking on its name in the Environment tab

About the data

Data from the CDC's Youth Risk Behavior Surveillance System (YRBSS)

- small subset (20 rows) of the full complex survey data
- national school-based survey conducted by CDC and state, territorial, tribal, and local surveys conducted by state, territorial, and local education and health agencies and tribal governments
- monitors health-related behaviors (including alcohol & drug use, unhealthy & dangerous behaviors, sexuality, physical activity); see Questionnaires
- original data in the R package **yrbss** which includes YRBSS from 1991-2013

Data set summary

summary(mydata)

##	id		age	sex	grade
##	Min. : 335340	14 years old	d :1		0
##	1st Qu.: 925193	5		Male : 8	
##	Median :1207132	16 years old	d :7		12th:4
##	Mean :1093150	17 years old	d :7		9th :4
##	3rd Qu.:1313188	18 years old	d or older:1		
##	Max. :1316123				
##		race4	bmi	weight_	kg
##	All other races	:5	Min. :17.48	Min. :4	3.09
##	Black or African	American:3	1st Qu.:20.36	1st Qu.:5	7.27
##	Hispanic/Latino	:6	Median :22.23	Median :6	4.86
##	White	: 4	Mean :23.01	Mean :6	4.09
##	NA's	:2	3rd Qu.:26.58	3rd Qu.:7	0.31
##			Max. :29.35	Max. :8	4.82
##		text_whi	le_driving_30d	smoked_ever	bullied_past_12mo
##	0 days		: 5	No :10	Mode :logical
##	1 or 2 days		: 2	Yes: 6	FALSE:11
##	3 to 5 days		: 1	NA's: 4	TRUE :7
##	All 30 days		: 1		NA's :2
##	I did not drive t	the past 30 da	ays: 1		
##	NA's		:10		

40/66

Data set info

dim(mydata)	names(mydata)	
	## [1] "id" ## [3] "sex"	"age" "grade"
nrow(mydata)	## [5] "race4" ## [7] "weight_kg" ## [9] "smoked_ever"	"bmi" "text_while_dı "bullied_past_
## [1] 20		
ncol(mydata)		
## [1] 10		

Data structure

• What are the different **variable types** in this data set?

<pre>str(mydata) # structure of data</pre>						
'data.frame': 20 obs. of 10 variables:						
\$ id : int 335340 638618 922382 923122 923963 925603 93372	24 9:					
\$ age : Factor w/ 5 levels "14 years old",: 4 3 1 2 2 3 3	4 2					
\$ sex : Factor w/ 2 levels "Female","Male": 1 1 2 2 2 2 1 1	2 1					
\$ grade : Factor w/ 4 levels "10th","11th",: 1 4 4 4 1 1 1 3	314					
<pre>\$ race4 : Factor w/ 4 levels "All other races",: 4 NA 4 4 2</pre>	1 1					
\$ bmi : num 27.6 29.3 18.2 21.4 19.6						
\$ weight_kg : num 66.2 84.8 57.6 60.3 63.5						
<pre>\$ text_while_driving_30d: Factor w/ 5 levels "0 days","1 or 2 days",: NA NA</pre>						
<pre>\$ smoked_ever : Factor w/ 2 levels "No","Yes": NA 2 2 2 1 1 2 1 NA 1</pre>	L					
<pre>\$ bullied_past_12mo : logi NA NA FALSE FALSE TRUE TRUE</pre>						

View the beginning of a data set

head(mydata)

##	id age	sex grade		race4 bmi
## 1 3353	40 17 years old	Female 10th		White 27.5671
## 2 6386	L8 16 years old	Female 9th		<na> 29.3495</na>
## 3 9223	32 14 years old	Male 9th		White 18.1827
## 4 9231	22 15 years old	Male 9th		White 21.3754
## 5 9239	53 15 years old	Male 10th	Black or African	American 19.5988
## 6 9256)3 16 years old	Male 10th	All oth	er races 22.1910
## weig	nt_kg text_whil	e_driving_30d	smoked_ever bulli	ed_past_12mo
## 1	56.23	<na></na>	<na></na>	NA
## 2	34.82	<na></na>	Yes	NA
## 3	57.61	<na></na>	Yes	FALSE
## 4	50.33	<na></na>	Yes	FALSE
## 5	53.50	<na></na>	No	TRUE
## 6	70.31	<na></na>	No	TRUE

View the end of a data set

tail(mydata)

## id	age sex grade race4
## 15 1313153	16 years old Female 11th Hispanic/Latino
## 16 1313291	
## 17 1313477	16 years old Female 10th All other races
## 18 1315121	17 years old Female 11th
## 19 1315850	17 years old Female 12th Hispanic/Latino
## 20 1316123	18 years old or older Female 12th Black or African American
## bmi	<pre>weight_kg text_while_driving_30d smoked_ever</pre>
## 15 26.5781	68.04 0 days No
## 16 24.8047	63.50 3 to 5 days No
## 17 25.0318	76.66 0 days No
## 18 22.2687	54.89 I did not drive the past 30 days Yes
## 19 19.4922	49.90 0 days <na></na>
## 20 27.4894	74.84 All 30 days Yes
## bullied	_past_12mo
## 15	TRUE
## 16	FALSE
## 17	TRUE
## 18	FALSE
## 19	FALSE
## 20	FALSE

Specify how many rows to view at beginning or end of a data set

head(mydata, 3)

##	id			age	sex	grade	race4	bmi	weight_kg
## 1	335340	17	years	old	Female	10th	White	27.5671	66.23
## 2	638618	16	years	old	Female	9th	<na></na>	29.3495	84.82
## 3	922382	14	years	old	Male	9th	White	18.1827	57.61
##	text_wl	hil	e_driv [_]	ing_3	30d smol	ked_eve	er bul	lied_past	t_12mo
## 1				<	VA>	< N/	4>		NA
## 2				<	VA>	Ye	es		NA
## 3				<	VA>	Ye	es		FALSE

tail(mydata, 1)

##idagesex graderace4##20131612318years old or older Female12th Black or African American##bmiweight_kgtext_while_driving_30dsmoked_ever bullied_past_12mo##2027.489474.84All 30daysYesFALSE

Working with the data

The \$

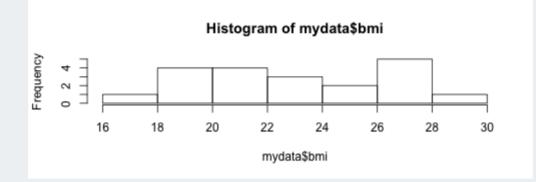
Suppose we want to single out the column of BMI values.

• How did we previously learn to do this?

mydata[, 6]

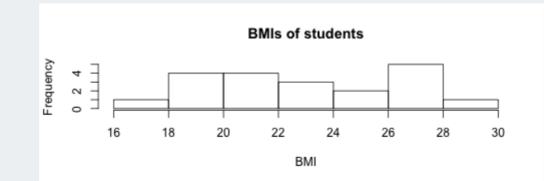
[1] 27.5671 29.3495 18.1827 21.3754 19.5988 22.1910 20.9913 17.4814
[9] 22.4593 26.5781 21.1874 19.4637 20.6121 27.4648 26.5781 24.8047
[17] 25.0318 22.2687 19.4922 27.4894

The problem with this method, is that we need to know the column number which can change as we make changes to the data set.

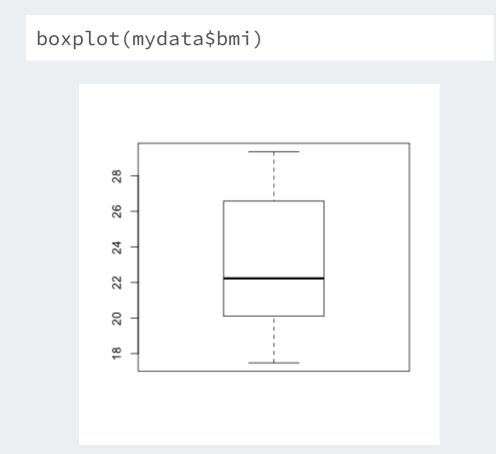

• Use the \$ instead: DatSetName\$VariableName

mydata\$bmi

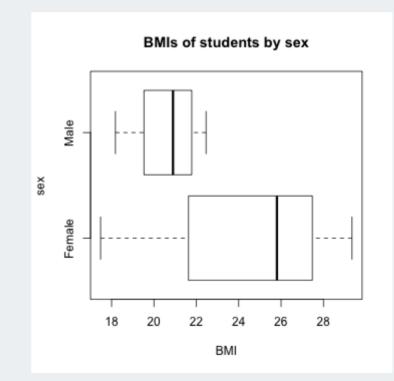
[1] 27.5671 29.3495 18.1827 21.3754 19.5988 22.1910 20.9913 17.4814
[9] 22.4593 26.5781 21.1874 19.4637 20.6121 27.4648 26.5781 24.8047
[17] 25.0318 22.2687 19.4922 27.4894

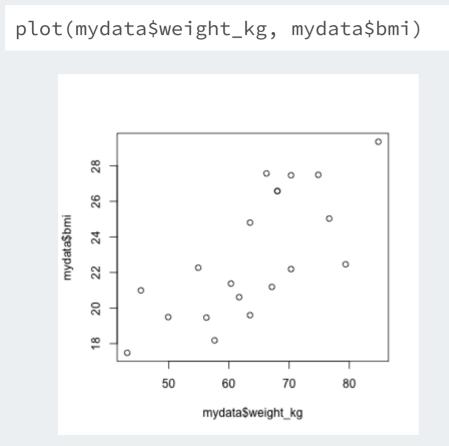

Basic plots of numeric data: Histogram

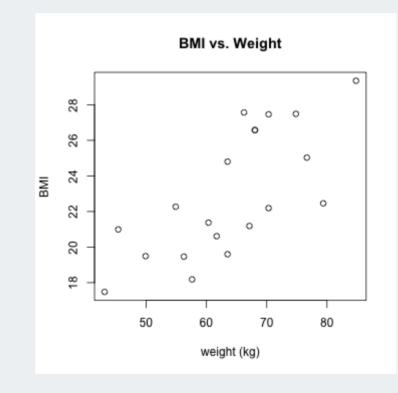
hist(mydata\$bmi)



With extra features:


hist(mydata\$bmi, xlab = "BMI", main="BMIs of students")


Basic plots of numeric data: Boxplot


```
boxplot(mydata$bmi ~ mydata$sex,
    horizontal = TRUE,
    xlab = "BMI", ylab = "sex",
    main = "BMIs of students by sex")
```


Basic plots of numeric data: Scatterplot

plot(mydata\$weight_kg, mydata\$bmi, xlab = "weight (kg)", ylab = "BMI", main = "BMI vs. Weight")

Summary stats of numeric data (1/2)

• Standard R summary command

```
summary(mydata$bmi)
```

##	Min.	lst Qu.	Median	Mean 3	3rd Qu.	Max.
##	17.48	20.36	22.23	23.01	26.58	29.35

• Mean and standard deviation

mean(mydata\$bmi)

[1] 23.00838

sd(mydata\$bmi)

[1] 3.56471

Summary stats of numeric data (2/2)

• Min, max, & median

min(mydata\$bmi)	median(mydata\$bmi)
## [1] 17.4814	## [1] 22.22985
max(mydata\$bmi)	
## [1] 29.3495	
• Quantiles	
quantile(mydata\$bmi, prob=c(0, .25, .5,	.75, 1))
## 0% 25% 50% 75% ## 17.48140 20.35878 22.22985 26.57810 2	

Add height column to data frame

Since $\mathrm{BMI}=rac{kg}{m^2}$, we have $\mathrm{height}(m)=\sqrt{rac{\mathrm{weight}(kg)}{\mathrm{BMI}}}$

mydata\$height_m <- sqrt(mydata\$weight_kg / mydata\$bmi)
mydata\$height_m</pre>

[1] 1.550000 1.699999 1.779999 1.680001 1.799998 1.780000 1.469998 ## [8] 1.570002 1.879998 1.600001 1.779998 1.699999 1.730001 1.600001 ## [15] 1.600001 1.600000 1.750001 1.569998 1.599999 1.650001

dim(mydata)

[1] 20 11

names(mydata)

##	[1]	"id"
##	[3]	"sex"
##	[5]	"race4"
##	[7]	"weight_kg"
##	[9]	"smoked_ever"
##	[11]	"height_m"

"age" "grade" "bmi" "text_while_du "bullied_past_

Access specific columns in data set

Previously we used **DatSetName**[, column#]

mydata[,	c(2,	<mark>6</mark>)]	# 2nd	& 6th columns	5
##				age bmi	
## 1		17	years	old 27.5671	
## 2		16	years	old 29.3495	
## 3		14	years	old 18.1827	
## 4		15	years	old 21.3754	
## 5		15	years	old 19.5988	
## 6		16	years	old 22.1910	
## 7		16	years	old 20.9913	
## 8		17	years	old 17.4814	
## 9		15	years	old 22.4593	
## 10		17	years	old 26.5781	
## 11		16	years	old 21.1874	
## 12		17	years	old 19.4637	
## 13		17	years	old 20.6121	
## 14		15	years	old 27.4648	
## 15		16	years	old 26.5781	

The code below uses *column names* instead of numbers.

mydata[, c("age", "bmi")]

##				age	bmi
##	1	17	years	old	27.5671
##	2	16	years	old	29.3495
##	3	14	years	old	18.1827
##	4	15	years	old	21.3754
##	5	15	years	old	19.5988
##	6	16	years	old	22.1910
##	7	16	years	old	20.9913
##	8	17	years	old	17.4814
##	9	15	years	old	22.4593
##	10	17	years	old	26.5781
##	11	16	years	old	21.1874
##	12	17	years	old	19.4637
##	13	17	years	old	20.6121
##	14				27.4648
##	15	16	years	old	26.5781 ₅₄
					01

66 /

Access specific rows in data set

• Rows for 14 year olds only

mydata[mydata\$age == "14 years old",] # 1 row since there is only one 14 year old

id age sex grade race4 bmi weight_kg
3 922382 14 years old Male 9th White 18.1827 57.61
text_while_driving_30d smoked_ever bullied_past_12mo height_m
3

• Rows for teens with BMI less than 19

mydata[mydata\$bmi < 19,]</pre>

 ##
 id
 age
 sex grade
 race4
 bmi weight_kg

 ##
 3
 922382
 14 years old
 Male
 9th
 White
 18.1827
 57.61

 ##
 8
 935435
 17 years old
 Female
 12th
 All other
 races
 17.4814
 43.09

 ##
 text_while_driving_30d
 smoked_ever
 bullied_past_12mo
 height_m

 ##
 3

 <NA>
 Yes
 FALSE
 1.779999

 ##
 8

 <NA>
 No
 FALSE
 1.570002

Access specific values in data set

• Grade and race for 15 year olds only

mydata[mydata\$age == "15 years old", c("age", "grade", "race4")]

##				age	grade			race4
##	4	15	years	old	9th			White
##	5	15	years	old	10th	Black	or	African American
##	9	15	years	old	10th			All other races
##	14	15	years	old	10th			Hispanic/Latino

• Age, sex, and BMI for students with BMI less than 19

mydata[mydata\$bmi < 19, c("age", "sex", "bmi")]</pre>

##				age	sex	bmi
##	3	14	years	old	Male	18.1827
##	8	17	years	old	Female	17.4814

Practice 2

1. Create a new script and save it as Practice2.R

2. Create data frames for males and females separately.

3. Do males and females have similar BMIs? Weights? Compares means, standard deviations, range, and boxplots.

4. Plot BMI vs. weight for each gender separately. Do they have similar relationships?

5. Are males or females more likely to be bullied in the past 12 months? Calculate the percentage bullied for each gender.

Save data frame

• Save **.RData** file: the standard R format, which is recommended if saving data for future use in R

save(mydata, file = "data/mydata.RData") # saving mydata within the data folder

You can load .RData files using the load() command:

```
load("data/mydata.RData")
```

• Save **csv** file: comma-separated values

write.csv(mydata, file = "data/mydata.csv", col.names = TRUE, row.names = FALSE)

The more you know

Installing and using packages

- Packages are to R like apps are to your phone/OS
- Packages contain additional functions and data
- Install packages with install.packages()
 - Also can use the "Packages" tab in Files/Plots/Packages/Help/Viewer window
 - Only install once (unless you want to update)
 - Installs from Comprehensive R Archive Network (CRAN) = package mothership

install.packages("dplyr") # only do this ONCE, use quotes

• Load packages: At the top of your script include **library()** commands to load each required package *every* time you open Rstudio.

library(dplyr) # run this every time you open Rstudio

• Use a function without loading the package with ::

dplyr::arrange(mydata, bmi)

Installing packages from other places (i.e. github, URLs)

• Need to have remotes package installed first:

install.packages("remotes")

• To install a package from github (often in development) use **install_github()** from the remotes package

```
# https://github.com/hadley/yrbss
remotes::install_github("hadley/yrbss")
```

Load it the same way
library(yrbss)

How to get help (1/2)

Use ? in front of function name in console. Try this:

> ?boxplot >							
Files Plots Packages Help Viewer	-0						
	Q						
R: Box Plots * Find in Topic							
boxplot {graphics}	R Documentation						
Box Plots							
Description							
Produce box-and-whisker plot(s) of the given (grouped) values.							
Usage							
<pre>boxplot(x,)</pre>							
<pre>## S3 method for class 'formula' boxplot(formula, data = NULL,, subset, na.action = NULL,</pre>							
<pre>## Default S3 method: boxplot(x,, range = 1.5, width = NULL, varwidth = FALSE, notch = FALSE, outline = TRUE, names, plot = TRUE, border = par("fg"), col = NULL, log = "", pars = list(boxwex = 0.8, staplewex = 0.5, outwex = 0.5), horizontal = FALSE, add = FALSE, at = NULL)</pre>							

Arguments

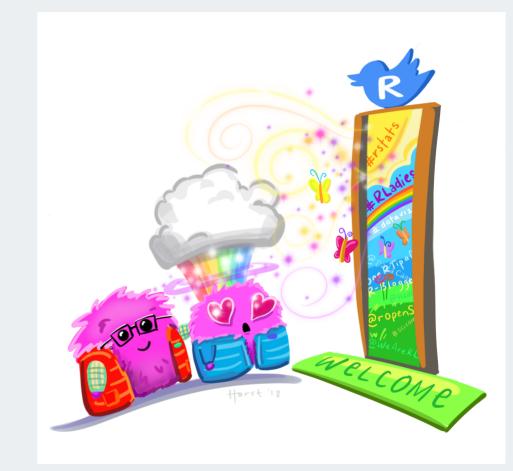
How to get help (2/2)

- Use **??** (i.e **??dplyr** or **??read_csv**) for searching all documentation in installed packages (including unloaded packages)
- search Stack Overflow #r tag
- googlequestion + rcran or + r (i.e. "make a boxplot rcran" "make a boxplot r")
- google error in quotes (i.e. "Evaluation error: invalid type (closure) for variable '***'")
- search github for your function name (to see examples) or error
- Rstudio community
- twitter #rstats

Resources

- Click on this List of resources for learning R
- Watch recordings of our other workshops
- Highly recommend Data Wrangling in R with Tidyverse

Getting started:


- RStudio IDE Cheatsheet
- Install R/RStudio help video
- Basic Basics

Some of this is drawn from materials in online books/lessons:

- Intro to R/RStudio by Emma Rand
- Modern Dive An Introduction to Statistical and Data Sciences via R by Chester Ismay & Albert Kim
- Cookbook for R by Winston Chang

Local resources

- OHSU's BioData club + active slack channel
- Portland's R user meetup group + active slack channel
- R-ladies PDX meetup group
- Cascadia R Conf May 31, 2020 in Eugene with workshops

Allison Horst

Contact info:

Jessica Minnier: *minnier@ohsu.edu*

Meike Niederhausen: *niederha@ohsu.edu*

This workshop info:

- Code for these slides on github: jminnier/berd_r_courses
- all the R code in an R script
- answers to practice problems can be found here: html, pdf
- The project folder of examples can be downloaded at github.com/jminnier/berd_intro_project & the solutions are in the solns/ folder.